MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B. TECH DEGREE EXAMINATION, NOVEMBER/DECEMBER 2025

	O O I CAMPOTRATE							
		N INTER-CI	Course Code: GNES			•		
	C	ourse Name: INTRO	DUCTION TO ARTIFICIA SCIENCE	AL INTELLIGENCE AND) DATA	4		
Ma	Max. Marks: 60 Duration: 2 hours 30							
			PART A	1				
		Answer al	l questions. Each question c	carries 3 marks	CO	Marks		
1		List the types of mach	ine learning systems with on	e example each.	CO1	(3)		
2		What is the difference	between classification and r	regression?	CO1	(3)		
3		What is the importance of linear algebra in data representation?		CO2	(3)			
4			Decomposition (SVD) with	*	CO2	(3)		
		its relevance with refe						
5		Define a random varia	ble with an example.		CO3	(3)		
6		Differentiate betwee applicability in statisti	n correlation and regress cal modelling.	sion in terms of their	CO3	(3)		
7		What are the main ber	efits of data science in mode	ern industries?	CO4	(3)		
8		What is meant by Big	Data, and how is it related to	o data science?	CO4	(3)		
			PART B					
		Answer any one full	question from each module.	Each question carries 9 ma	rks			
			Module 1					
9	a)	=	on, a model outputs a prob 0.5, state the predicted class.		CO1	(3)		
	b		neans clustering to the datas	set {2, 4, 8, 10} with k = 2	CO1	(3)		
)	and initial centroids 2	and 8. Show new clusters.					
	c)		ples. A classification mode	l misclassifies 12 samples.	CO1	(3)		
		Compute its accuracy.						
10	a)	•	weights $w = [0.5, 0.5]$, and ore applying activation.	d bias $b = 0$, compute the	CO1	(3)		
	b	Explain with an exam	ple how a Multi-Layer Perc	ceptron (MLP) can solve a	CO1	(3)		
)	problem that a single	perceptron cannot.					
	c)	Logistic regression i (Yes/No). Explain ho making.	CO1	(3)				
			Module 2					

11	a)	. (2 0)	CO2	(3)
		Find the eigenvalues of the matrix $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.	332	(5)
	b	Apply spectral decomposition to the symmetric matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$.		(3)
)			
	c)	For the covariance matrix $A = \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$, identify whether the eigenvectors will	CO2	(3)
		be orthogonal or not.		
12	a)	A dataset has 100 features. After applying PCA, only 10 features are retained. What does this imply about dimensionality reduction and why might it be useful in Machine Learning?		(3)
	b	A noisy image matrix is approximated using only the first two largest	CO2	(3)
)	singular values in its SVD. Explain computationally why this reduces storage		
		and how it helps in image compression.		
	c)	For the matrix $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, find $A^T A$ and use it to compute the singular	CO2	(3)
		values of A.		
		Module 3		
13	a)	A coin is tossed 3 times. List the possible outcomes of the experiment. Also		(3)
		write the probability distribution for the event of getting at least two heads.	CO3	
	b	A bag contains 3 red and 2 blue balls. One ball is drawn at random. Find the	CO3	(3)
)	probability that it is (i) red, (ii) blue.		
	c)	A factory has 3 machines A, B, C producing 30%, 50%, and 20% of items,	CO3	(3)
		respectively. Their defect rates are 2%, 3%, and 4%. If a randomly chosen		
		item is defective, find the probability it was produced by machine B.		
14	a)	The marks of 5 students are: 50, 60, 70, 80, 90. Compute the mean and	CO3	(3)
		variance. Use these parameters to interpret the data distribution.		
	b	The data for X: {1, 2, 3, 4, 5}, Y: {2, 4, 6, 8, 10}. Compute the correlation	CO3	(3)
)	coefficient. What does the result indicate?		
	c)	A sample of size n is drawn from a normal distribution $N(\mu,\sigma)$ with known	CO3	(3)
		variance. Show that the sample mean is the MLE of μ .		
		Module 4		
15	a)	A bank wants to predict whether a loan applicant will default (Yes/No). The	CO4	(5)
		dataset contains: Age, Income, Loan Amount, Previous Default (Yes/No).		
		(a) Write the steps to build a classification model using machine learning.		
		(b) Suggest which algorithm (Logistic Regression / Decision Tree) could be		
		used and why.		
	b	Discuss any two applications of machine learning in data science.	CO4	(4)
)			
16	a)	A university wants to analyze students' performance data - attendance,	CO4	(5)
		assignment scores, exam scores. Describe how the data science process		

	would be applied here.				
b	A bank receives the following types of data daily: 500,000 transaction	CO4	(4)		
1	records (numerical), 50,000 customer feedback forms (text), ATM				
	surveillance videos (image/video).				
	(a) Identify the Big Data characteristics present.(b) Briefly explain why traditional methods fail and how data science				
	techniques overcome this.				
